Contribution of host-derived tissue factor to tumor neovascularization.
نویسندگان
چکیده
OBJECTIVE The role of host-derived tissue factor (TF) in tumor growth, angiogenesis, and metastasis has hitherto been unclear and was investigated in this study. METHODS AND RESULTS We compared tumor growth, vascularity, and responses to cyclophosphamide (CTX) of tumors in wild-type (wt) mice, or in animals with TF levels reduced by 99% (low-TF mice). Global growth rate of 3 different types of transplantable tumors (LLC, B16F1, and ES teratoma) or metastasis were unchanged in low-TF mice. However, several unexpected tumor/context-specific alterations were observed in these mice, including: (1) reduced tumor blood vessel size in B16F1 tumors; (2) larger spleen size and greater tolerance to CTX toxicity in the LLC model; (3) aborted tumor growth after inoculation of TF-deficient tumor cells (ES TF(-/-)) in low-TF mice. TF-deficient tumor cells grew readily in mice with normal TF levels and attracted exclusively host-related blood vessels (without vasculogenic mimicry). We postulate that this complementarity may result from tumor-vascular transfer of TF-containing microvesicles, as we observed such transfer using human cancer cells (A431) and mouse endothelial cells, both in vitro and in vivo. CONCLUSIONS Our study points to an important but context-dependent role of host TF in tumor formation, angiogenesis and therapy.
منابع مشابه
Endogenous Brain Pericytes Are Widely Activated and Contribute to Mouse Glioma Microvasculature
Glioblastoma multiforme (GBM) is the most common brain tumor in adults. It presents an extremely challenging clinical problem, and treatment very frequently fails due to the infiltrative growth, facilitated by extensive angiogenesis and neovascularization. Pericytes constitute an important part of the GBM microvasculature. The contribution of endogenous brain pericytes to the tumor vasculature ...
متن کاملInhibition of neovascularization to simultaneously ameliorate graft-vs-host disease and decrease tumor growth.
BACKGROUND Blood vessels are formed either by sprouting of resident tissue endothelial cells (angiogenesis) or by recruitment of bone marrow (BM)-derived circulating endothelial progenitor cells (EPCs, vasculogenesis). Neovascularization has been implicated in tumor growth and inflammation, but its roles in graft-vs-host disease (GVHD) and in tumors after allogeneic BM transplantation (allo-BMT...
متن کاملPathophysiology of Tumor Neovascularization
Neovascularization is essential to the process of development and differentiation of tissues in the vertebrate embryo, and is also involved in a wide variety of physiological and pathological conditions in adults, including wound repair, metabolic diseases, inflammation, cardiovascular disorders, and tumor progression. Thanks to cumulative studies on vasculature, new therapeutic approaches have...
متن کاملHedgehog Promotes Neovascularization in Pancreatic Cancers by Regulating Ang-1 and IGF-1 Expression in Bone-Marrow Derived Pro-Angiogenic Cells
BACKGROUND The hedgehog (Hh) pathway has been implicated in the pathogenesis of cancer including pancreatic ductal adenocarcinoma (PDAC). Recent studies have suggested that the oncogenic function of Hh in PDAC involves signaling in the stromal cells rather than cell autonomous effects on the tumor cells. However, the origin and nature of the stromal cell type(s) that are responsive to Hh signal...
متن کاملComplete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor.
Growth of the human rhabdomyosarcoma A673 cell line in nude mice is substantially reduced but not completely suppressed after systemic administration of the antihuman vascular endothelial growth factor (VEGF) monoclonal antibody (Mab) A.4.6.1. Potentially, such escape might be attributable to incomplete local penetration of the antibody because of a diffusion barrier associated with tumor growt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 28 11 شماره
صفحات -
تاریخ انتشار 2008